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Abstract

In this study, laminar forced convective heat transfer of a Newtonian fluid in a micropipe is analyzed by taking the viscous dissipation
effect, the velocity slip and the temperature jump at the wall into account. Hydrodynamically and thermally fully developed flow case is
examined. Two different thermal boundary conditions are considered: the constant heat flux (CHF) and the constant wall temperature
(CWT). Either wall heating (the fluid is heated) case or wall cooling (the fluid is cooled) case is examined. The Nusselt numbers are ana-
lytically determined as a function of the Brinkman number and the Knudsen number. Different definitions of the Brinkman number
based on the definition of the dimensionless temperature are discussed. It is disclosed that for the cases studied here, singularities for
the Brinkman number-dependence of the Nusselt number are observed and they are discussed in view of the energy balance.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Microelectromechanical systems (MEMS) has gained a
great deal of interest in recent years. Such small devices
typically have characteristic size ranging from 1 mm down
and to 1 micron, and may include sensors, actuators,
motors, pumps, turbines, gears, ducts and valves. Micro-
devices often involve mass, momentum and energy trans-
port. Modeling gas and liquid flows through MEMS may
necessitate including slip, rarefaction, compressibility,
intermolecular forces and other unconventional effects [1].

It is shown that fluid flow and heat transfer at microscale
differ greatly from those at macroscale. At macroscale, clas-
sical conservation equations are successfully coupled with
the corresponding wall boundary conditions, usual no-slip
for the hydrodynamic boundary condition and no-tempera-
ture-jump for the thermal boundary condition. These two
boundary conditions are valid only if the fluid flow adjacent
to the surface is in thermal equilibrium. However, they are
not valid for gas flow at microscale. For this case, the gas
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no longer reaches the velocity or the temperature of the sur-
face and therefore a slip condition for the velocity and a
jump condition for the temperature should be adopted.

The Knudsen number, Kn is the ratio of the gas mean
free path, k, to the characteristic dimension in the flow
field, D, and, it determines the degree of rarefaction and
the degree of the validity of the continuum approach. As
Kn increases, rarefaction become more important, and
eventually the continuum approach breaks down. The fol-
lowing regimes are defined based on the value of Kn [2].

(i) Continuum flow (ordinary density levels) Kn 6 0.001.
(ii) Slip-flow regime (slightly rarefied) 0.001 6 Kn 6 0.1.

(iii) Transition regime (moderately rarefied) 0.1 6 Kn 6
10.

(iv) Free-molecule flow (highly rarefied) 10 6 Kn 61.

Viscous dissipation is another parameter that should be
taken into consideration at microscale. It changes temper-
ature distributions by playing a role like an energy source
induced by the shear stress, which, in the following, affects
heat transfer rates. The merit of the effect of the viscous
dissipation depends on whether the pipe is being cooled
or heated.
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Nomenclature

A cross-sectional area [m2]
Br Brinkman number, Eq. (10)
Brq modified Brinkman number, Eq. (13)
cp specific heat at constant pressure
D diameter of the pipe [m]
F tangential momentum accommodation coeffi-

cient
Ft thermal accommodation coefficient
h convective heat transfer coefficient [W/m2 K]
k thermal conductivity [W/m K]
Kn Knudsen number
Nu Nusselt number
Pr Prandtl number
qw wall heat flux [W/m2]
R dimensionless radial coordinate
r radial coordinate [m]
r0 radius of the pipe
T temperature [K]
u velocity [m/s]
z axial direction [m]

Greek symbols

a thermal diffusivity [m2/s]
c specific heat ratio
k molecular mean free path
l dynamic viscosity [Pa s]
q density [kg/m3]
t kinematic viscosity [m2/s]
h dimensionless temperature, Eq. (8)
hq dimensionless temperature modified, Eq. (13)
h* dimensionless temperature, Eq. (16)
h�q dimensionless temperature modified, Eq. (17)

Subscripts

c centerline
m mean
s fluid properties at the wall, singularity value
w wall
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There is a scarcity of experimental data and theoretical
analysis available in the existing literature, many of which
are contradictory and conflicting, yielding different correla-
tions with opposite characteristics. Therefore, the mecha-
nisms of flow and heat transfer in microchannels are still
not understood clearly.

Readers are referred to see the following recent excellent
reviews related to transport phenomena in microchannels.
Ho and Tai [3] summarized discrepancies between micro-
channel flow behavior and macroscale Stokes flow theory.
Palm [4], Sobhan and Garimella [5] and Obot [6] reviewed
the experimental results in the existing literature for the
convective heat transfer in microchannels. Rostami et al.
[7,8] presented reviews for flow and heat transfer of liquids
and gases in microchannels. Gad-el-Hak [1] broadly
surveyed available methodologies to model and compute
transport phenomena within microdevices. Guo and Li
[9,10] reviewed and discussed the size effects on microscale
single-phase fluid flow and heat transfer. In a recent study,
Morini [11] presents an excellent review of the experimental
data for the convective heat transfer in microchannels in
the existing literature. He critically analyzed and compared
the results in terms of the friction factor, laminar-to-turbu-
lent transition and the Nusselt number.

Gravesen et al. [12] explained deviations at the micro-
scale from the macroscale in terms of wall slip and com-
pressibility phenomena in microchannels. Gaseous flow
in two-dimensional (2-D) micromachined channels with a
Cartesian geometry for various Knudsen numbers was
studied by Harley et al. [13]. Barron et al. [14,15] extended
the Graetz problem to slip- flow and developed simpli-
fied relationships to describe the effect of slip-flow on the
convection heat transfer coefficient. Ameel et al. [16] ana-
lytically treated the problem of laminar gas flow in micro-
tubes with a constant heat flux boundary condition at the
wall assuming a slip flow hydrodynamic condition and a
temperature jump thermal condition at the wall. They dis-
closed that the fully developed Nusselt number decreased
with Knudsen number. Tso and Mahulikar [17–19] studied
the effect of the Brinkman number on convective heat
transfer and flow transition in microchannels. Tunc and
Bayazitoglu [20] studied steady laminar hydrodynamically
developed flow in microtubes with uniform temperature
and uniform heat flux boundary conditions using the inte-
gral technique. Toh et al. [21] numerically investigated
three-dimensional fluid flow and heat transfer phenomena
inside heated microchannels using a finite volume method.
Xu et al. [22] theoretically analyzed and examined the
effects of viscous dissipation in microchannel flows. They
suggested a criterion to draw the limit of the significance
of the viscous dissipation effects. Koo and Kleinstreuer
[23,24] investigated the effects of viscous dissipation on
the temperature field and ultimately on the friction factor
using dimensional analysis and experimentally validated
computer simulations. Hsieh et al. [25] presented an experi-
mental and theoretical study of low Reynolds number
flow of nitrogen in a microchannel. They concluded that
using slip boundary conditions, one could well predict
the mass flow rate as well as inlet/exit pressure drop and
friction factor constant ratio for a three-dimensional phys-
ical system. In a recent study, Aydın [26] investigated the
effect of the viscous dissipation on the heat transfer for a
hydrodynamically and thermally fully developed flow in
a pipe.
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The purpose of the present study is to theoretically
investigate the gas flow in a micropipe. Both the constant
wall temperature (CWT) and the constant heat flux
(CHF) thermal boundary conditions are applied at the
wall. Either wall heating (the fluid is heated) case or wall
cooling (the fluid is cooled) case is considered. The com-
bined effects of the Brinkman number and the Knudsen
number on the temperature profile and the Nusselt number
are determined.
2. Analysis

In this case, the flow is considered to be fully developed
both hydrodynamically and thermally. Steady, laminar
flow having constant properties (i.e. The thermal conduc-
tivity and the thermal diffusivity of the fluid are considered
to be independent of temperature) is considered. The axial
heat conduction in the fluid and in the wall is assumed to
be negligible.

In this study, the usual continuum approach is coupled
with the two main characteristics of the microscale phe-
nomena, the velocity slip and the temperature jump,
following the Refs. [16,20].

Velocity slip is defined as [16]:

us ¼ �
2� F

F
k
ou
or

����
r¼r0

ð1Þ

where us is the slip velocity, k the molecular mean free path,
and F is the tangential momentum accommodation coeffi-
cient, and the temperature jump is defined as [27]:

T s � T w ¼ �
2� F t

F t

2c
cþ 1

k
Pr

oT
or

����
r¼r0

ð2Þ

where Ts is the temperature of the gas at the wall, Tw the
wall temperature , and Ft is the thermal accommodation
coefficient. For the rest of the analysis, F and Ft will be
shown by F and assumed to be 1.

The fully developed velocity profile taking the slip flow
condition at the wall into consideration is derived from
the momentum equation as

u ¼ 2umð1� ðr=r0Þ2 þ 4KnÞ
ð1þ 8KnÞ ð3Þ

where um is the mean velocity and Kn is the Knudsen num-
ber, Kn = k/D.

The conservation of energy including the effect of the
viscous dissipation requires

u
oT
oz
¼ a

r
o

or
r
oT
or

� �
þ t

cp

ou
or

� �2

ð4Þ

where the second term in the right hand side is the viscous
dissipation term.

Due to axisymmetry at the center, the thermal boundary
condition at r = 0 can be written as
oT
or

����
r¼0

¼ 0 ð5Þ

Thermal boundary conditions of constant wall heat flux
(CHF) and constant wall temperature (CWT) at wall
are considered and they are separately treated in the
following:
2.1. CHF case

The constant heat flux at wall states that

k
oT
or

����
r¼r0

¼ qw ð6Þ

where qw is positive when its direction is to the fluid (the
hot wall), otherwise it is negative (the cold wall).

For the uniform wall heat flux case, the first term in the
left-side of Eq. (4) is

oT
oz
¼ dT w

dz
¼ dT s

dz
ð7Þ

By introducing the following non-dimensional quantities:

R ¼ r
r0

h ¼ T s � T
T s � T c

ð8Þ

Eq. (4) can be written as

d

dR
R

dh
dR

� �
¼ a

2ðR� R3 þ 4KnRÞ
ð1þ 8KnÞ þ 16Br

R3

ð1þ 8KnÞ2
ð9Þ

where a ¼ � umr2
0

a T s�T cð Þ
dT s

dz and Br is the Brinkman number
given as

Br ¼ lu2
m

k T s � T cð Þ ð10Þ

For the solution of the dimensionless energy transport
equation given in Eq. (9), the dimensionless boundary con-
ditions are given as follows:

h ¼ 1
oh
oR

����
R¼0

¼ 0 at R ¼ 0

h ¼ 0 at R ¼ 1

ð11Þ

The solution of Eq. (9) under the thermal boundary condi-
tions given in Eq. (11) is

h Rð Þ ¼ T s � T
T s � T c

¼ 1

3þ 16Kn
3þ R4 � 4R2 þ 16Knð1� R2Þ 4Br

ð1þ 8KnÞ2

"

� R4 � R2 þ 4ðR4 � R2Þ
� �#

ð12Þ

As it is usual in the existing literature, we can also use the
modified Brinkman number which is

Brq ¼
lu2

m

Dqw

ð13Þ
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In terms of the modified Brinkman number (based on the
wall heat flux) given above, the temperature distribution
is obtained as

hq ¼
T � T s

qwr0

k

¼ 4

1þ 8Kn

�
þ 32Brq

ð1þ 8KnÞ3

#
� 3

16
þ R2

4

�
� R4

16
þ KnðR2 � 1Þ

�

� 2Brq

ð1þ 8KnÞ2
ðR4 � 1Þ ð14Þ

Eqs. (12) and (14) which are in terms of Ts (note again Ts is
the temperature of the fluid at the wall) can be transformed
into the equations in terms of Tw, the wall temperature
using the following conversion formula:

T s � T w
qwr0

k

¼ � 4c
cþ 1

Kn
Pr

T s � T w

T s � T c

¼ 4c
cþ 1

Kn
Pr

oh
oR

����
R¼1

ð15Þ

Then Eqs. (12) and (14) become, respectively,

h� Rð Þ ¼ T w � T
T s � T c

¼ 1

3þ 16Kn
3þ R4 � 4R2 þ 16Knð1� R2Þ
"

þ 4Br

ð1þ 8KnÞ2
R4 � R2 þ 4ðR4 � R2Þ
� �

� 4c
cþ 1

Kn
Pr
�4� 32Knþ Br

8þ 32Kn

ð1þ 8KnÞ2

" ##
ð16Þ

and

h�q ¼
T � T w

qwr0

k

¼ 4

1þ 8Kn
þ 32Brq

ð1þ 8KnÞ3

" #
� 3

16
þ R2

4
� R4

16
þ KnðR2 � 1Þ

� �

� 2Brq

ð1þ 8KnÞ2
ðR4 � 1Þ � 4c

cþ 1

Kn
Pr

ð17Þ

In fully developed flow, it is usual to utilize the mean fluid
temperature, Tm, rather than the center line temperature
when defining the Nusselt number. This mean or bulk tem-
perature is given by

T m ¼
R

quT dAR
qudA

ð18Þ

The dimensionless mean temperature in terms of Br is
obtained as

h�m ¼
T w � T m

T c � T s

¼ 11� 4Brð1þ 4KnÞ þ 216Knþ 1408Kn2 þ 3072Kn3

6ð1þ 8KnÞ2ð3þ 16KnÞ

� 4c
cþ 1

Kn
Pr
�4� 32Knþ Br

8þ 32Kn

ð1þ 8KnÞ2

" #
ð19Þ
while, in terms of Brq, it is derived as

h�q;m ¼
T m � T w

qwr0

k

¼ � 1

4
1þ 16c

cþ 1

Kn
Pr

� �
� Brq

3ð1þ 8KnÞ4

� Br

ð1þ 8KnÞ3
� 1þ 16Br

24ð1þ 8KnÞ2
� 1

6ð1þ 8KnÞ ð20Þ
2.2. CWT case

When the constant temperature is considered, since
dT s

dz ¼ 0, the first term in the left-side of Eq. (4) is

oT
oz
¼ T � T s

T c � T s

� �
dT c

dz
ð21Þ

Substituting this result into Eq. (4) and introducing the
dimensionless quantities given in Eq. (8) give the following
dimensionless equation for the CWT case:

d

dR
R

dh
dR

� �
¼ a

2ðR� R3 þ 4KnRÞ
ð1þ 8KnÞ hþ 16Br

R3

ð1þ 8KnÞ2

ð22Þ
where a ¼ � umr2

0

a T s�T cð Þ
dT c

dz and Br is the Brinkman number.

The boundary conditions given in Eq. (11) are also valid
for this case. Actually, no simple closed form solution
can be obtained for this equation. However, the variation
of h can be quite easily obtained to any required degree
of accuracy by using an iterative procedure [28]. The tem-
perature profile for the CHF case is used as the first
approximation and Eq. (22) is then integrated to obtain
h. This iterative procedure is repeated until an acceptable
convergence is obtained.

The forced convective heat transfer coefficient is given as
follows:

h ¼
koT

or

��
r¼r0

T w � T m

ð23Þ

which is obtained from the following Nusselt number
expressions based on h* and h�q, respectively:

Nu ¼ hD
k
¼ �

2oh�

oR

��
R¼1

h�m
ð24Þ

Nu ¼ hD
k
¼ � 2

h�q;m
ð25Þ

After performing necessary substitutions, we obtain:

Nu¼
2 4þ32Kn�Br 8þ32Kn

ð1þ8KnÞ2

h i
11�4Brð1þ4KnÞþ216Knþ1408Kn2þ3072Kn3

6ð1þ8KnÞ2ð3þ16KnÞ � 4c
cþ1

Kn
Pr �4�32KnþBr 8þ32Kn

ð1þ8KnÞ2

h ih i
ð26Þ

In terms of the modified Brinkman number, Brq,

Nu ¼ 2

1
4

1þ 16c
cþ1

Kn
Pr

	 

þ Brq

3ð1þ8KnÞ4 þ
Brq

ð1þ8KnÞ3 þ
1þ16Brq

24ð1þ8KnÞ2 þ
1

6ð1þ8KnÞ

ð27Þ



O. Aydın, M. Avcı / International Journal of Heat and Mass Transfer 49 (2006) 1723–1730 1727
3. Results and discussion

In this study, we investigate the interactive effects of the
Brinkman number and Knudsen number for both hydro-
dynamically and thermally fully developed flow in a micro-
pipe. Note that Kn = 0 represents the macroscale case,
while Kn > 0 holds for the microscale case, and Br = 0 or
Brq = 0 represents the case without the effect of the viscous
dissipation. As stated earlier, two different thermal bound-
ary conditions at the pipe wall have been examined in this
study, namely constant heat flux (CHF) and constant wall
temperature (CWT). They are treated separately in the
following.

At first, we validated our analysis by comparing some
limiting results with those available in the existing litera-
ture, mainly by those of Ameel et al. [16] and Tunc and
Bayazitoglu [20], and note for the CHF case we obtain
exact solutions. Comparison of our results with those in
terms of the Nusselt numbers for different Knudsen num-
bers showed an excellent agreement (Table 1). Note that
Ameel et al. [16] did not consider the viscous dissipation
effect, and Tunc and Bayazitoglu�s study [20] covered the
Brinkman number range of �0.01 6 Br 6 0.01.

For the CHF condition, Fig. 1 depicts the variation of
the Nusselt number with the Knudsen number for differ-
Table 1
The fully developed Nusselt number values, Brq = 0.0 for the CHF case

Kn Present Ameel and coworkers [15] Tunc and Bayazitoglu [20]

0.00 4.364 4.364 4.3627
0.02 4.071 4.071 4.0701
0.04 3.749 3.749 3.7483
0.06 3.439 3.439 3.4383
0.08 3.156 3.156 3.1554
0.10 2.904 2.904 2.9035
0.12 2.681 2.681 2.6813
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Fig. 1. The variation of the Nusselt number with the Knudsen number at
different values of the Brinkman number for the CHF case.
ent Brinkman numbers. For Br = 0, an increase at Kn

decreases Nu due to the temperature jump at the wall. Vis-
cous dissipation, as an energy source, severely distorts the
temperature profile. Remember positive values of Br corre-
spond to wall heating (heat is being supplied across the
walls into the fluid) case (Tw > Tc), while the opposite is
true for negative values of Br. In the absence of viscous dis-
sipation the solution is independent of whether there is wall
heating or cooling. However, viscous dissipation always
contributes to internal heating of the fluid, hence the solu-
tion will differ according to the process taking place. Nu

decreases with increasing Br for the hot wall (i.e. the wall
heating case). For this case, the wall temperature is greater
than that of the bulk fluid. Viscous dissipation increases the
bulk fluid temperature especially near the wall since the
highest shear rate occurs in this region. Hence, it decreases
the temperature difference between the wall and the bulk
fluid, which is the main driving mechanism for the heat
transfer from wall to fluid. However, for the cold wall
(i.e. the wall cooling case), the viscous dissipation increases
the temperature differences between the wall and the bulk
fluid by increasing the fluid temperature more. As seen
from Fig. 1, increasing Br in the negative direction
increases Nu. This situation is an indication of the aiding
effect of the viscous dissipation on heat transfer for the wall
cooling case. As seen from Fig. 1, the behavior of Nu versus
Kn for lower values of the Brinkman number, either in the
case of wall heating (Br = 0.01) or in the case of the wall
cooling (Br = �0.01) is very similar to that of Br = 0.
For the wall cooling case, at Br = �0.1, the decreasing
effect of Kn on Nu intensifies a lot. For the wall cooling
case, at Br = 0.1, an interesting situation is observed.
Increasing Kn increases Nu up to Kn ffi 0.01 where a maxi-
mum occurs. Beyond this value, Kn has a decreasing effect
on Nu.

The standard way of making temperature dimensionless
based on Eq. (8) is not appropriate for the situation of
imposed heat flux because the temperature scale DT =
Ts � Tc varies with relevant parameters and may cause to
a misinterpretation of the corresponding variation of T.
In fact, for a given qw, DT is unknown of the problem
and it is more convenient to define a fixed temperature
scale that we take as qwR/k. Fig. 2 shows the variation of
the Nusselt number with the Knudsen number for different
values of the modified Brinkman number, Brq. The behav-
ior of Nu versus Kn for different Brq is very similar to for
different Br (Fig. 1). As expected, increasing dissipation
increases the bulk temperature of the fluid due to internal
heating of the fluid. For the wall heating case, this increase
in the fluid temperature decreases the temperature differ-
ence between the wall and the bulk fluid, which is followed
with a decrease in heat transfer. When wall cooling is
applied, due to the internal heating effect of the viscous
dissipation on the fluid temperature profile, temperature
difference is increased with the increasing Brq.

For the CWT case, Fig. 3 illustrates Nu versus Kn for
different values of Br. Similar behaviors have been
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Fig. 4. (a) The influence of Br on Nu at various Kn for the CHF case.
(b) The variation of Brs with Knudsen number for the CHF case.
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observed to those obtained for the CHF case. As seen, for
the same value of Br, Nu values are found to be lower than
those for the CHF case.

Here, as an original attempt, we extend the Brinkman
number range for the above cases considered. Fig. 4a
shows the influence of Br on Nu for various Kn. As shown,
a singularity is observed at Br for each Kn. Actually, this is
an expected result, when Eq. (26) is closely examined. For
the wall heating case, at Kn = 0, with the increasing value
of Br, Nu decreases in the range of 0 < Br < 11/4. This is
because the temperature difference which drives the heat
transfer decreases. At Br = 11/4, the heat supplied by the
wall into the fluid is balanced with the internal heat gener-
ation due to the viscous heating. For Br > 11/4, the inter-
nally generated heat by the viscous dissipation overcomes
the heat supplied by the wall. When Br! +1, Nu reaches
an asymptotic value. When wall cooling (Br < 0) is applied
to reduce the bulk temperature of the fluid, as explained
earlier, the amount of viscous dissipation may change the
overall heat balance. With increasing value of Br in nega-
tive direction, the Nusselt number reaches an asymptotic
value. As shown, increasing the Knudsen number changes
the location of the singularity point and the asymptotic val-
ues of Nu. The variation of the singular value of the Brink-
man number, Brs with the increasing Knudsen number is
shown in Fig. 4b. Using the modified Brinkman number
for the CHF case, the variation of Nu with Brq for different
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Kn is shown in Fig. 5a. Again, singularities are observed.
As noticed, when Brq goes to infinity for either wall heating
or wall cooling case, the Nusselt number reaches the same
asymptotic value, Nu = 0. This is due to fact that the heat
generated internally by viscous dissipation processes will
balance the effect of wall heating or cooling, reaching a
thermal equilibrium condition. Fig. 5b shows the variation
of the singular value of the modified Brinkman number,
Brq,s with the increasing Knudsen number. As seen, oppo-
site to Brs, Brq,s decreases with Kn.

For the CWT condition, Fig. 6a illustrates the variation
of Nu with Br. The behavior observed can be explained
similarly to that for the CHF condition. Again, singulari-
ties are observed. And, the variation of the singular value
of the Brinkman number, Brs with Kn is given in Fig. 6b.
An increase at Kn results in increasing Brs.
4. Conclusions

The problem of both hydrodynamically and thermally
fully developed forced convection in a micropipe has been
studied. The slip condition and temperature jump at the
wall, and the viscous dissipation are included in the analy-
sis. The interactive effects of the Brinkman number and
Knudsen number on the Nusselt number have been studied
in detail. For the CHF case, Nu = f(Br,Kn) and Nu =
f(Brq,Kn) have been developed. The variation of the Nus-
selt number with the Brinkman or the modified Brinkman
number presented some singularities. These singularities
have been shown to originate from the thermal energy
balance between the wall heat and the viscous dissipation
heat during the thermal transport and the structure of
the related formulations. For low values of the Br or Brq,
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the Knudsen number has been shown to decrease the Nus-
selt number.
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